

Question 1

- **A-** Show that the conductivity in FE model is an especial case of that in NFE model.
- B- Show that for the FE model, the effective mass is equal to the free electron mass.

Question 2

Given the following data for the variation of the conductivity of *intrinsic silicon* with temperature, evaluate the energy gap of silicon, and estimate the wavelength that will be absorbed if we shine a light on the sample.

ĺ	T (0C)	22		1.7	- 12	
	T (°C)	-23	2	17	42	67
	$\sigma (\Omega^{-1} m^{-1})$	26.7	295	2050	10800	45032

Lnσ

Question 3

The following figure represents the variation of the conductivity with temperature for an *extrinsic semiconductor*. What does each of the three shown regions refer to ?

Question 4

It is well known that **Fermi level** in metals is temperature independent. In extrinsic semiconductors the situation is totally different.

The following diagram shows the variation of **Fermi level** with temperature in *n-type* semiconductors. Explain this phenomenon based on the definition of **Fermi level** in semiconductors.

Question 5

Starting with the relation:

$$R = \frac{R_e \sigma_e^2 + R_h \sigma_h^2}{\left(\sigma_e + \sigma_h\right)^2}$$

for Hall constant of a semiconductor contains both holes and electrons, show that this relation may

rewritten as :
$$R = \frac{p\mu_h^2 - n\mu_e^2}{e(n\mu_e + p\mu_h)^2}$$

where n, p and μ_e , μ_h are the number and mobility of electrons and holes respectively.

(2x+26)=A