Analytical Mechanics Phys (252) Lecture 10

Forces that Depend on Time

The Concept of Impulse

Forces of extremely short duration in time, such as those exerted by bodies undergoing collisions, are called impulsive forces.

If we confine our attention to one body, or particle, the differential equation of motion is

$$
d(m v)=F d t .
$$

Let us take the time integral over the interval t_{l} to t_{2}, the time during which the force is considered to act, then we have

$$
\Delta(m v)=\int_{t_{1}}^{t_{2}} F d t=P
$$

The Impulse

Note:

The time integral of the force is the impulse. It is usually denoted by the symbol \boldsymbol{P}.

1- The work is equal to the change in the energy of the particle.

$$
\Delta T=\int_{x_{1}}^{x_{2}} F d x=W
$$

2- The impulse is equal to the change in the momentum of the particle.

$$
\Delta(m v)=\int_{t_{1}}^{t_{2}} F d t=P
$$

Forces that Depend on Velocity

Fluid Resistance and Terminal Velocity

The force acts on a body is often a function of its velocity. For example, the viscous resistance exerted on a body moving through a fluid depends on its velocity. In such case, the differential equation of motion may be written in either of the two forms

$$
\begin{aligned}
& F_{0}+F(v)=m \frac{d v}{d t} \\
& F_{0}+F(v)=m v \frac{d v}{d x}
\end{aligned}
$$

Here F_{0} is any constant force that does not depend on v.
Since, $F(v)$ is a complex function and must be found through experimental measurements, it can be replaced by the following approximation :

$$
\begin{aligned}
& F(v)=-c_{1} v-c_{2} v|v| \\
& F(v)=-v\left(c_{1}+c_{2}|v|\right)
\end{aligned}
$$

where c_{1} and c_{2} are constants whose values depend on the size and shape of the body.

For spheres in air,

$$
c_{1}=1.55 \times 10^{-4} \mathrm{D} \quad \& \quad c_{2}=0.22 \mathrm{D}^{2}
$$

where D is the diameter of the sphere in meters.
For small v the linear term in $F(v)$ can be used, while the quadratic term dominates at large v.

Linear or
 Quadratic?

To decide whether the case is linear or quadratic, the ratio of the latter to the former usually used;

$$
\frac{c_{2} v|v|}{c_{1} v}=\frac{0.22 v|v| D^{2}}{1.55 \times 10^{-4} v D}=1.4 \times 10^{3}|v| D
$$

If the value of v will make the ratio exceeds 1 then it is a quadratic case, otherwise, it is a linear one.

Horizontal Motion through a Fluid

Linear Resistance

(Exp.2.4.1)

Suppose a block is projected with initial velocity v_{0} on a smooth horizontal surface and that there is air resistance such that the linear term dominates.
Hence, $\quad F_{0}=0$, and $F(v)=-c_{1} v$.
The differential equation of motion is then; $-c_{1} v=m \frac{d v}{d t}$
By integrating,

$$
t=-\int_{v_{0}}^{v} \frac{m d v}{c_{1} v}=-\frac{m}{c_{1}} \ln \left(\frac{v}{v_{0}}\right)
$$

Solving for v as a function of t gives;

$$
v=v_{0} e^{-c_{1} t / m}
$$

A second integration gives

$$
\begin{aligned}
& x=\int_{0}^{t} v_{0} e^{-c_{1} t / m} d t \\
& x=\frac{m v_{0}}{c_{1}}\left(1-e^{-c_{1} t / m}\right)
\end{aligned}
$$

Showing that after a long time ($t \sim \infty$) the block approaches a limiting position given by;

$$
x_{\lim }=m v_{0} / c_{1}
$$

Horizontal Motion through a Fluid

Quadratic Resistance
(Exp.2.4.2)

The differential equation of motion in this case is;

$$
-c_{2} v^{2}=m \frac{d v}{d t}
$$

Similarly we can get v and the position x as a function of time.

Vertical Fall through a Fluid

1-Linear Case

Terminal Velocity

For an object falling vertically in a resisting fluid, the force F_{0} in this case, is the weight of the object, -mg. For the linear case of fluid resistance, the differential equation of motion is;

$$
-m g-c_{1} v=m \frac{d v}{d t}
$$

Integrating and solving for v, we get

$$
v=-\frac{m g}{c_{1}}+\left(\frac{m g}{c_{1}}+v_{0}\right) e^{-c_{1} t / m}
$$

After a sufficient time $\left(t \gg m / c_{1}\right)$, the velocity approaches a limiting value ($-m g / c_{1}$). This limiting velocity of a falling body is called the terminal velocity $\left(v_{t}\right)$. Hence the terminal speed is;

$$
v_{t}=\frac{m g}{c_{1}}
$$

The value of v_{t} / g is known as the characteristic time of the motion (τ). I.e ,

$$
\tau=\frac{v_{t}}{g}=\frac{m}{c_{1}}
$$

At the velocity v_{t} the force of resistance is just equal and opposite to the weight of the body so that the net force is zero, and so the acceleration is zero.

2- Quadratic case:
In this case $F(v) \propto v^{2}$ and the differential equation of motion is;

$$
-m g-c_{2} v^{2}=m \frac{d v}{d t}
$$

Similarly, the terminal speed is ;

$$
v_{t}=\sqrt{\frac{m g}{c_{2}}}
$$

And the characteristic time is;

$$
\tau=\frac{v_{t}}{g}=\sqrt{\frac{m}{c_{2} g}}
$$

EXAMPLE 2.4.3

Falling Raindrops and Basketballs

Calculate the terminal speed in air and the characteristic time for (a) a very tiny spherical raindrop of diameter $0.1 \mathrm{~mm}=10^{-4} \mathrm{~m}$ and (b) a basketball of diameter 0.25 m and mass 0.6 kg .

$$
\begin{array}{c|c|}
\hline \frac{Q}{L}=\frac{c_{2} v|v|}{c_{1} v}=\frac{0.22 v|v| D^{2}}{1.55 \times 10^{-4} v D}=1.4 \times 10^{3}|v| D \\
\text { Raindrop } & \text { Basketball } \\
\hline D=0.1 \mathrm{~mm}=10^{-4} \mathrm{~m} & D=0.25 \mathrm{~m} \\
m=0.52 \times 10^{-9} \mathrm{~kg} & m=0.6 \mathrm{~kg} \\
\hline \frac{Q}{L}=1.4 \times 10^{3}|v| 10^{-4}=0.14 v & \frac{Q}{L}=1.4 \times 10^{3}|v| 0.25=350 v \\
\hline \frac{Q}{L} \geq 1 \quad \text { if } v \geq \frac{1}{0.14}=7.1 \mathrm{~m} / \mathrm{s} & \frac{Q}{L} \geq 1 \quad \text { if } v \geq \frac{1}{350}=2.8 \times 10^{-3} \mathrm{~m} / \mathrm{s}
\end{array}
$$

Then, linear case should hold for the falling raindrop

Then, Quadratic case should hold for the falling Basketball

The drag Coefficient

The terminal speed

Raindrop	Basketball
$D=0.1 \mathrm{~mm}=10^{-4} \mathrm{~m}$	$D=0.25 \mathrm{~m}$
$m=0.52 \times 10^{-9} \mathrm{~kg}$	$m=0.6 \mathrm{~kg}$

Then, linear case should hold for the falling raindrop

$$
\begin{aligned}
\mathrm{c}_{1} & =1.55 \times 10^{-4} \mathrm{D} \\
& =1.55 \times 10^{-8} \quad \text { N.s } / \mathrm{m}
\end{aligned}
$$

$$
v_{t}=\frac{m g}{c_{1}}=0.33 m / s
$$

$$
\tau=\frac{v_{t}}{g}=0.034 s
$$

Then, Quadratic case should hold for the falling Basketball

$$
\begin{aligned}
\mathrm{c}_{2} & =0.22 \mathrm{D}^{2} \\
& =0.0138 \quad \mathrm{~N} . \mathrm{s}^{2} / \mathbf{m}^{2}
\end{aligned}
$$

$$
v_{t}=\sqrt{\frac{m g}{c_{2}}}=20.6 \mathrm{~m} / \mathrm{s}
$$

$$
\tau=\frac{v_{t}}{g}=2.1 s
$$

