Analytical Mechanics Phys (252) Lecture 9

Examples

The Concept of Potential Energy

Free Fall

EXAMPLE (2.3.1)

Then

$$
\begin{aligned}
& F=-\frac{d V}{d x}=-m g \\
& V=m g x+C
\end{aligned}
$$

We can choose $C=0$, which means that $V=0$ when $x=0$.
The gravitational potential energy is then $\quad V=m g x$
For instance, let the body be projected upward with initial speed v_{0} from the origin $x=0$. These values give;
so;

$$
\begin{gathered}
T+V(x)=T_{0}+V\left(x_{0}\right) \equiv E \\
\frac{1}{2} m v^{2}+m g x=\frac{1}{2} m v_{0}^{2}+0 \\
v^{2}=v_{0}^{2}-2 g x
\end{gathered}
$$

The turning point of the motion, which is in this case the maximum height, is given by setting $v=0$.
This gives

$$
h=x_{\max }=\frac{v_{0}^{2}}{2 g}
$$

Other Solution

Using;

$$
2 a\left(x-x_{0}\right)=v^{2}-v_{0}^{2}
$$

we obtain;

$$
h=x-x_{0}=\frac{-v_{0}^{2}}{-2 g}=\frac{v_{0}^{2}}{2 g}
$$

EXAMPLE 2.2.1

$$
\begin{aligned}
& \qquad x=a=\frac{F_{g}}{m}=g \sin \theta \\
& \text { and } \quad x-x_{0}=\frac{h}{\sin \theta}
\end{aligned}
$$

Using;

$$
2 a\left(x-x_{0}\right)=v^{2}-v_{0}^{2}
$$

we obtain;

$$
v^{2}=2 g \sin \theta\left(\frac{h}{\sin \theta}\right)=2 g h
$$

Consider a block that is free to slide down a smooth, frictionless plane that is inclined at an angle θ to the horizontal. If the height of the plane is h and the block is released from rest at the top ($v_{0}=0$), what will be its speed when it reaches the bottom?

Other Solution

$$
\begin{gathered}
T+V(x)=T_{0}+V\left(x_{0}\right) \equiv E \\
\frac{1}{2} m v^{2}+0=0+m g h
\end{gathered}
$$

$$
v^{2}=2 g h
$$

Morse Function

EXAMPLE (2.3.3):

The potential energy of a vibrating diatomic molecule as a function of x is given by;

$$
V(x)=V_{0}\left[1-e^{-\left(x-x_{0}\right) / \delta}\right]^{2}-V_{0}
$$

Show that:
1- x_{0} is the separation of the two atoms at equilibrium, i.e.
when the potential energy function is minimum.
2- and that $V\left(x_{0}\right)=-V_{0}$.
Solution $\quad V(x)$ is min when its derivative (w.r.t) x is zero;

$$
\begin{aligned}
& F(x)=-\frac{d V(x)}{d x}=0 \\
& 2 \frac{V_{0}}{\delta}\left(1-e^{-\left(x-x_{0}\right) / \delta}\right)\left(e^{-\left(x-x_{0}\right) / \delta}\right)=0 \\
& 1-e^{-\left(x-x_{0}\right) / \delta}=0 \\
& \ln (1)=-\left(x-x_{0}\right) / \delta \\
& \therefore \quad x=x_{0} \\
& 0.0 .4 \\
& 0.0 .4 \\
& \hline
\end{aligned}
$$

Substituting in the main equation, the value of the $\min V(x)$ can be found as;

$$
V\left(x_{0}\right)=-V_{0}
$$

